Microarray RNA amplification

- Found 5149 results

Get tips on using Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System to perform RNA amplification & labeling Mammalian - RNA, rhesus monkey brain tissue Biotin

Products Enzo Life Sciences Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System

Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Rat saphenous arteries Biotin

Products Thermo Fisher Scientific FlashTag™ Biotin HSR RNA Labeling Kits

Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Mouse skin tissue Biotin

Products Thermo Fisher Scientific FlashTag™ Biotin HSR RNA Labeling Kits

Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Mouse mammary tissue Biotin

Products Thermo Fisher Scientific FlashTag™ Biotin HSR RNA Labeling Kits

Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Rat primary vascular smooth muscle cells Biotin

Products Thermo Fisher Scientific FlashTag™ Biotin HSR RNA Labeling Kits

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human PBMCs

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human HepG2

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human STUMP

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human Tumor

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Mouse iPSC

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms